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Numerical Simulation of Rotor Flow in Hover

Guowei Yang* and Lixian Zhuang®
University of Science and Technology of China, Hefei, 230026 Anhui, People’s Republic of China

Aerodynamic loads on a multibladed helicopter rotor in hovering flight are calculated by solving the unsteady
three-dimensional Reynolds-averaged Navier-Stokes equations. It is well known that, because of the numerical
diffusion, the rotor-wake effects cannot be properly simulated by a Navier-Stokes calculation with a moderate
grid number, which leads to the calculated suction pressures higher than the experimental values. The rotor-wake
effects are then accounted for by the correction of local geometric angle of attack according to a free-wake modeling
in addition to an empirical modification for the tip flow effects. The validity and efficiency of the present method
have been verified by the comparisons between numerical results and experimental data.

Introduction

O calculate the aerodynamic performance of a helicopter in

hovering flight is a problem of great practical importance as
well as the theoretical complexity. Theoretically, a solution of the
full Navier-Stokes equations with appropriate turbulence modeling
and body-conforminggrid is sufficient for a good description of all
of the physicsinvolved. But unlike the flowfield around a fixed wing,
the trailing vortex wake of a rotary wing rotates with the rotor and
is shed to a far distance below the rotor plane by its self-induced
velocity. The helical vortex sheet interacts strongly with the lift-
ing surfaces, but this process is hard to be simulated unless using
a quite clustered grid, which generally requires very large compu-
tational resource. Srinivasan et al.,! using about one million grid
number to solve the thin-layer Navier-Stokes equations, calculated
the whole flowfield including the induced effects of the wake and
the interaction of tip vortices with successive blades, but they also
found their captured vortex structure was overdiffused because of
the coarse grid used.

The current methods for calculating rotor performance usually
solve the potential, Euler, or Navier-Stokes equations coupled with
an external free- or rigid-wake model based on the lift line or lift sur-
face theory 2~ Butit s clear that these governing equations are hard
to match with the linear trailing wake modeling in a physically con-
sistent manner. Further, those approaches also require fairly large
computer resource from solving two coupled models simultane-
ously.

Agarwal and Deese’ calculated the aerodynamicloads by solving
the thin-layer Navier-Stokes equations, and the rotor-wake effects
were modeled with a correction applied to the geometric angle of
attack along the blades. This correction was obtained by computing
the local induced downwash by the rotor wake with a free-wake
analysis program. In fact, this method just established a weaker link
between the rotor and its wake and avoided the complex boundary
handling and the solution of coupled equations. Therefore, the grid
number used is not huge, and the accuracy of calculated results is
satisfactory.

In the present paper we essentially borrowed the approach from
Ref. 7, but extended it to the solution of a complete Navier-Stokes
equation, rather than a thin-layer one. In addition, an improved
method is suggested to obtain a proper correction of the local angle
of attack of the blades. This is constructed by the comparison be-
tween the results with and withoutrotor wake modeling, in addition
to a heuristic consideration of the coupling rotor-wake and three-
dimensional blade-tip effects that is expressed by a semi-empirical
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formula. The results calculated using the present computational
method are compared with the available experimental data and are
proved to be in good agreement with them, which demonstrated the
reliability and efficiency of the present method.

Computational Grid

Body-conforming,single-block,three-dimensionalcomputation-
al grids were constructed for the rectangularrotor blades® by stack-
ing and bending two-dimensionalH grids, which were generated by
solvingan ellipticequation.’ For hovercases only the flow aboutone
blade needs to be simulated because the flow is periodic from blade
to blade. A cylindrical H-grid topology was chosen. Unlike the grid
of fixed wing, here the two-dimensional H grid in each spanwise
position takes the local effective angle of attack into account. For
a single case the grid system is generated once and for all, but for
different calculated conditions, say at different Mach numbers, the
new grid must be regenerated in a similar way. Figure 1 illustrates
the typical grid structure of the rotor. Figure 1a shows the cylindrical
nature of the grid in the plane of the rotor, and Fig. 1b shows a typ-
ical two-dimensional H grid in a spanwise station. The coordinate
system is chosen such that x is in the chordwise direction, y is in
the spanwise direction, and z is in the normal direction.

The grids used here have 100 grid pointsin the wraparounddirec-
tion with 30 points on the body, 35 points in the spanwise direction
with 25 points on the blade surface, and 45 points in the normal
direction with 25 points below the rotor grid plane. The grid was
clustered near the leading and trailing edges and near the tip region
toresolvethe tip vortex. It was also clusteredin the normal direction
to resolve the boundary layer near the blade surface. One can see
that the total grid number in this method is not so large, but still the
calculated results are satisfactory. This is just the key point that we
prefer to recommend the present method.

Computational Method

The governingequationsare the three-dimensionalunsteady com-
pressible Navier-Stokes equationsin aninstantaneousinertial frame
ofreference. Writtenin a conservativeform with a generalizedbody-
fitted curvilinear coordinate, it is

0.0+ 0:E+0,F+0,G =0:E, +9,F, +9.G, (D)
where Q are the conserved quantities; E, F', and G are the inviscid
flux vectors; and E,, F,, and G, are the viscous flux vectors. The
generalized coordinates v =t, £ =&(x, y,2,1), n=n(x,y,2,1),
and § ={(x, y, z, ) are attached to the blade.

For an instantaneousinertial frame of reference fitting to the ro-
tating wing, the orientationsof the x axis and y axis must be changed
with time but still be fixed to the undisturbed fluid at infinity. Then
the grid system can always be attached to the blades and generated
once and for all in a single case. The time derivativeterm in Eq. (1),
however, should be carefully calculated in a proper way. We prefer
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Fig. 1 H-type grid for the two-bladed rotor in hover.

to use this frame of reference because it is easier to handle the far-
field boundary conditionsin this frame than in a noninertialrotating
frame and keep the mesh to be blade fixed.

The inviscid and viscous fluxes are evaluated using a second-
order central difference with a fourth-order artificial viscosity.'
The implicitoperator for time steppingis the lower upper symmetric
Gauss-Seidel (LU-SGS) scheme.!! This operator takes the form

LD"'UAg" = —AtR(q") )

where D, L, and U are diagonal, lower, and upper tridiagonal ma-
trices, respectively, Ag" = Q"*! — Q", and A is the time step.
The term R(g) consists of the spatial difference of the inviscid and
viscous flux vectors at time level n.

R(g") =0:E +3,F +03,G — (3:E, + 0,F, + 3.G,) (3)

To reduce the implicit factorization error, inner relaxation itera-
tions at each time step are applied as follows: using the solution at
time level n, setting the initial conditionto Q" *:© = Q" and apply-
ing LU-SGS to solve the following equation in each inner iteration:

(LD—l U)n +1,m Aqn +1,m — —AT[(Q" +1,m _ Q")/AT + R(qn + Lrn)]
G

where Ag"t 1 = Qntlm+l — gn+lm The variablen refers to the
time level t =t,, and m refers to the iteration level. Three inner
iterations were used for the unsteady cases in this work. Completing
the inner iterations, the solution at the next time level is set to be

Qn +1 — Qn + 1,mmax

For turbulent viscous flows the nondimensional viscosity coeffi-
cient in viscous fluxes is computed as the sum of u; + u,, where
1y, the laminar viscosity, is estimated using Sutherland’s law and
u,, the turbulent viscosity, is evaluated using the Baldwin-Lomax
algebraic eddy viscosity model.!?

Boundary Conditions

In the calculation procedure the rotor blade is started from restin
a quiescent fluid, and the evolution of the flowfield is monitored as
the blade moves azimuthally.

All of the boundary conditions are applied explicitly. At the wall
ano-slipboundary conditionis used for the viscous calculations. To
ensure continuity across the wake cut and also outboard of the blade
tip, where the grid collapses to a singular plane because of H-grid
topology, the flow quantities are determined by averaging the flow
variables from both sides of the singular plane.

To capture the information in the wake region of the blade, a pe-
riodical condition is used in the azimuthal direction that swaps the
flow information, after interpolation, at the front and back bound-
aries of the cylindrical grid. The radial inboard and far-field bound-
aries as well as the top boundary are handled by one-dimensional
characteristic boundary conditions.

On the outflow boundary below the rotor plane, the specifica-
tion of the flow velocity is dictated from the momentum theory. At
the flow exit of a circular hole whose area is half of the rotor disk,
the outflow velocityis as much as twice the momentum theory value
averaged on the plane of the rotor. In practical calculation the aver-
age velocity is calculatedin a grid plane just on the edge of the blade
viscous region. Other flow variables are extrapolated from within.

Loading Calculation Without Angle Correction

The test cases considered here correspond to the experimental
hover conditions of Caradonna and Tung.® The experimentalmodel
consistsof a two-bladedrigid rotor with rectangularplanformblades
and no twist or taper. The blades adopt NACA 0012 airfoil sections
with an aspectratio of 6. The inboard plane near the axis of rotation
was located at a radial station equal to one chord.

Theoretically, the numerical solution to the full Navier-Stokes
equations without rotor wake modeling seems to be capable of sim-
ulating all physics of the flow. The first calculationis then performed
for anonliftingcase with a tip Machnumberof M, =0.52, collective
pitch 6. =0 deg, and the Reynolds number based on the blade-tip
speed and chord Re =2 X 10°. Figure 2 shows the surface-pressure
distributionat different spanwise locations. Sure enough, the agree-
ment between the calculation and experimentis excellent.
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Fig. 2 Surface pressure for nonlifting case.
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Fig. 3 Surface pressure coefficients.

Then we calculate the lifting case for M, =0.44, Re =2 X 108,
6. =8 deg. Figure 3 shows the surface pressure distributionat differ-
entspanwise stations,and the calculatedresultis shownas Cal.(1)in
this figure. The pressure distribution shows much stronger suction
peaks at the leading edge than those observed experimentally, but
near the rotor-tip region the loading matches well with the experi-
ment data.

This situation comes from the following fact. In the nonlifting
case the vorticity is limited to a thin layer at the vicinity of rotor
planeso that the rotor wake can be correctly simulatedand the calcu-
lated pressure is in good agreement with the experimental data. On
the other hand, for the lifting case the helical trailing vortex moves
along its axial direction up to far below the rotor plane, and this
trailing vortex has strong effects on the rotor loading. Because of
the numerical dissipationof coarse grid, the Navier-Stokes calcula-
tion cannotsimulate such a helical trailing vortex correctly. A cheap
way to solve this problemis to add an external rotor vortex model to
the Navier-Stokes calculation to reflect the effective angle of attack
of the rotor blades. Another fact, however, is that near the rotor tip
the calculated loading without vortex modeling still matches well
with the experimentdata. Roberts and Murman® pointed out that the
loading at the blade-tip region is dominated by three-dimensional
tip effects and is relatively insensitive to the rotor trailing vor-
tex. In view of this, we suggested a further modification to im-

prove the simple trailing vortex correction by a formula mentioned
next.

Wake Modeling

In Ref. 13, the authors developed a free-wake analysis for simu-
lating the propellerslipstream flowfield based on the lift line theory.
Here, the code is extended to the rotor flow calculation. The main
difference is that the propeller slipstream moves along its axial di-
rection because of the effect of freestream axial flow, but the motion
of rotor wake is a self-induced one. Now the free-wake modeling is
described as follows.

The initial shape of the helical vortex wake of the rotating blades
is given by
x; =r;sin(0+ 6,),

Yi =71 COS(0+ Qp)a i = (Vzi/wrlip)e

&)

where 60 is angle of rotor rotation, r; is the horizontal radius of
the helical vortex line,  is the angle velocity of the rotor, ry, is
the radius of the rotor tip, v,; represents the axial induced velocity,
0, =2n(k — 1)/ p, and p is the rotor blade number. The multibladed
interference is considered in the calculation when k is taken from
1 to p. The initial helical vortex lines represented by Eq. (5) are
divided into a near-vortex wake and a far-vortex wake region; the
near-wake region is composed of free-line vortex chains, and the
trailing-vortex contraction effect is considered only in this region.
The far-wake region consists of the equal-pitch and equal-diameter
helical vortex lines determined by the last point parameter of the
near-wake region. In the paper the near-wake region extended to
the 8 =3600 deg rotational azimuth downstream of the blade. A
relaxation iteration scheme of the free near wake was constructed.
Through this iterative calculation a contraction rotor wake can be
obtained. The detail can be seen in Ref. 13.

For M, =0.44, Re =2 X 10°, 9. =8 deg, the rotor-wake contrac-
tion calculated by the free-wake modeling is shown in Fig. 4. The
compressibility effect is considered through the Prandtl-Glauert
rule. It is clear that the wake contraction mainly occurs in the vicin-
ity below the blade and the contraction value is about 10%, which
can be regarded as qualitatively reasonable.

Loading Calculation with Angle Correction

After the contraction wake shapeis determined, the axial-induced
velocity along the rotor blade can be calculated, and the effective
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Fig. 4 Rotor-tip wake and its contraction radius corresponding to the
rotational azimuth.
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angle of attack along the spanwise direction is then calculated by
the following formula:

oi(r) = 6. — tan”'[v.(r)/ @r] (6)

where v,(7) is the axial-induced velocity at the rotor spanwise posi-
tion r. The distributionof effective angle of attack along the blade is
givenin Fig. 5, correspondingthe case Cal.(2). The effective angles
are smaller than the collective pitch angle 6. =8 deg, particularly
on the inboard part of the blade.
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Fig. 5 Distribution of effective angle of attack.

N rfr =050 o Exp.
| ' —Cal.

-Cp
o
w

o Mt=0.433,0 =12°
c

) 02 04 06 08 1
X/C

Cp
o
o

M =0.433,§ =12°
t c

0 02 0.4 06 08 1
X/C

<p

0 02 04 08 08 1
X/C

Fig. 6 Surface pressure coefficients at higher collective pitch angle.

Using the local effective angle of attack, we recalculated the ro-
tor loading with the Navier-Stokes solver. The calculated pressure
distributionsare shown in Fig. 3, correspondingthe Cal.(2). The cal-
culated result is much better than that of Cal.(1). The pressureis in
good agreement with the experimental data in the middle spanwise
stationy/ R =0.5, butdoes not agree quite well with the experimen-
tal results at the tip region. As we have justindicated, the tip pressure
is mainly affected by the three-dimensionaltip effect, rather than the
rotor-wake effect, and so the underestimated effective attack-angle
correction in the tip region needs to be reconsidered.

Loading Calculation with Further Angle Correction

To give a propercorrection of the angle of attack in the tip region,
an empirical formula for effective angle of attack can simply be
constructed as follows:

7" = T'root

a(r) = ae(r) + ,3( ) [0 — oeg(rip)] (7)

tip — "root

where 3, n are two free parameters to be determined empirically.
According to Eq. (7), the modified effective angle will take the
value a.q(r) in the root region and take the value about the col-
lective pitch 6. at the rotor tip. Based on some numerical tests
using Eq. (7), we found that the computational pressure distribu-
tions are in excellent agreement with the experimental value at all
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Fig. 7 Surface pressure coefficients at higher Mach number.
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spanwise stations if we choose § =1.2, n =3. The corresponding
distributionof the modified effective angle along the blade is shown
in Fig. 5. Using the modified angle of attack, the calculated pres-
sures are shown as Cal.(3) in Fig. 3. In this way the combined
rotor-wake and blade-tip effects on the aerodynamic loading of the
rotor blades are properly accounted for, although the simple expres-
sion (7) is essentially an empirical formula based on some heuristic
arguments.

Further numerical calculations have been performed under the
conditions listed next:

1) Increasingcollective pitch angle—Figure 6 gives the pressures
at the various blade spanwise stations at the higher collective pitch
angle for the case M, =0.433, Re =2 X 10°, and 0. =12 deg. The
agreement between the calculations and experiments is good. It
reflects that the empirical formula for effective angle modification
is proper for differentblade pitch angles.

2) Increasing Mach number— Figure 7 gives the pressures at the
various spanwise stations at a higher Mach number for the case
M, =0.612, Re =2.67 X 10°, and 6. =8 deg. The agreement be-
tween the calculations and experiments is also good. The angle
modification is proper for different Mach numbers.

3)IncreasingMach numberand collectivepitchangle—Figures 8
and 9 give the pressure comparisons between computational
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Fig. 8 Surface pressure coefficients at increased Mach number and
collective pitch angle.
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Fig. 9 Surface pressure coefficients at increased Mach number and
collective pitch angle.

and experimental values for the cases M, =0.520, Re =2 X 10°,
0. =12 degand M, =0.610, Re =2.67 X 10°, 6. =12 deg.

The agreement between the calculations and the experiments is
quite satisfactory.

The empirical formula for effective angle modification is proper
at least for the subsonic rotor flow.

Conclusion

In this paper an approach is presented for computing the loads
of hovering helicopter rotor using the Navier-Stokes equations. To
overcome the spurious numerical diffusion of vortex with coarse
grid, a rotor-wake model is introduced into the computation by a
modification of the local effective angle of attack along the blade,
which is determined by the vortex-lattice method for potential flow
in addition to an empirical correction. The validity of the present
method is verified by the comparisons between the computational
and experimental results.
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